Trigonometry and Vector Decomposition

1. Two position vectors, \boldsymbol{U} and \boldsymbol{V} , are superimposed on a grid. Each square is one meter long and one meter wide. Write each vector as a coordinate pair $\boldsymbol{A} = (A_x, A_y)$, using +/- signs for direction.

$$ec{U} = \ ec{V} = \ ec{U} + ec{V} = \ ec{U} - \ ec{V} - \ ec{$$

- 2. The vector **E** in the figure has a magnitude of 10 m, and the angle $\theta = 60^{\circ}$.
 - a. Draw a triangle using E as the hypotenuse and θ as one of the angles. Then, sketch the component vectors \mathbf{E}_{x} and \mathbf{E}_{y} .

b. What is the magnitude (size or amount) of E_x ? First write it in terms of E and a function of the angle θ , then calculate the value. Include units at every step of the calculation.

c. What is the magnitude (size or amount) of E_y ? First write it in terms of E and a function of the angle θ , then calculate the value. Include units at every step of the calculation.

d. Draw a triangle using E as the hypotenuse and ϕ as one of the angles. Then, sketch the component vectors \mathbf{E}_{x} and \mathbf{E}_{y} .

e. What is the magnitude (size or amount) of E_x ? First write it in terms of E and a function of the angle ϕ , then calculate the value. Include units at every step of the calculation.

f. What is the magnitude (size or amount) of E_y ? First write it in terms of E and a function of the angle ϕ , then calculate the value. Include units at every step of the calculation.

g. How does the value of E_x in part b compare with the value of E_x in part e?

h. How does the value of E_y in part c compare with the value of E_y in part f?