Free-Body Diagrams (FBD)

A FBD is a picture that illustrates all of the forces acting on a particular object. The object is "free" from its environment, as only the forces are shown. FBDs are essential in Mechanics and will be **required** for all of your solutions to Dynamics (Newton's Laws) problems.

Steps:

- Isolate the object being analyzed.
 Identify ALL forces that act ON the object; NOT the forces it exerts on its surroundings.
- 2. Draw a convenient coordinate system.
- 3. Represent the object as a dot at the origin, when possible (particle model).
- 4. Draw **vectors** representing each of the identified forces. (Tail of each force vector on the object. Illustrate angles.)

Free-Body Diagram Sketching: Dos and Don'ts

Example: top view of a box pulled by three ropes.

FBDs:

✓ DOs:

- Represent forces with vectors (arrows)
- Label each vector with a symbol
- · Illustrate the angles wrt the coordinate axes
- Place the tail of the vector on the object (dot)

X DON'Ts:

- · Represent forces with lines without arrowheads
- · Label vectors with values, or leave unlabeled
- · Forget to identify the angles
- · Place the tail of the vector at random locations

Second (Components) Free-Body Diagram

If there are vectors not aligned with the axes in the first FBD, draw a second FBD where the non-aligned vectors are decomposed ("broken") along said axes.

This Second –or Components– FBD is a like copy of the first one:

- · it must follow the same orientation of the axes; and
- it must include all force vectors.

The only difference between the two FBDs is that the latter illustrate the *component* vectors of the non-aligned vectors.

Component Vectors:

After sketching the Components FBD, determine the <u>magnitude</u> of the component vectors in terms of the original vector magnitudes and the angle(s), that is, use trigonometry.

For example:

$$F_{2y} = F_2 \sin \theta$$

 $F_{3y} = F_3 \cos \phi$

Note:

- \vec{F}_{2x} and \vec{F}_{2y} are called the "component vectors" of \vec{F}_2 , while their magnitudes are simply referred to as the "components".
- These (trig) relations only hold for the <u>magnitudes</u> or components, not the vectors themselves. Do not cap these vectors/component vectors with arrows.