Free-Fall Motion

Free-fall refers to motion under the influence of the gravitational force only. It is another example of motion with constant acceleration.

Kinematic Equationskinematic variables $v_f = v_i + a_y \Delta t$ $\Delta y =$ $y_f = y_i + v_i \Delta t + \frac{1}{2}a_y(\Delta t)^2$ $v_i =$ $v_f = v_i^2 + 2a_y \Delta y$ $|a_y| = g$ $\Delta t =$

1. Throwing a Rock.

a. A rock is thrown upward from a 50 m high cliff with an initial speed of 20 m/s. Five seconds after release the magnitude of its velocity is closest to...? (Let $g = 10 \text{ m/s}^2$)

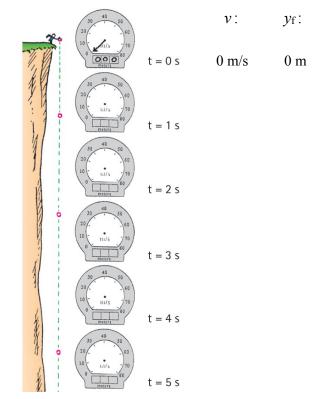
b. A rock is thrown upward from a 50 m high cliff with an initial speed of 20 m/s. The maximum height of the rock (measured from atop the cliff) is closest to...? (Let $g = 10 \text{ m/s}^2$)

2. Stone in a Well.

A stone dropped down a well accelerates with a constant value of $g = 10 \text{ m/s}^2$ and hits the bottom after a time t = 3.0 s. The depth of the well is closest to...?

More Practice: How far and how fast?

Suppose that a dropped rock is equipped with a speedometer and an odometer.


Each second the speed readings increase by:

$$v_f = v_i + a_y \,\Delta t$$

And each second the distance from the origin increases by:

$$y_f = y_i + v_i \,\Delta t + \frac{1}{2} a_y (\Delta t)^2$$

Complete the speedometer and odometer readings.

