Solving Dynamics Problems (3rd reference): Newton's Second Law

"Once is happenstance. Twice is coincidence. Three times begins to seem like a message to be ignored at one's peril".

- The Orphan's of Raspay

Setup State: Sketch a Free-Body Diagram

Isolate the object being analyzed.
 Identify ALL forces that act ON the object; NOT the forces it exerts on its surroundings.

- 3. Represent the object as a dot at the origin (particle model).
- 4. Draw vectors representing each of the identified forces. (Tail of force vector on the object. Illustrate angles.)

[new]

5. Illustrate the direction of the acceleration near the FBD (not on the center dot).

Analysis Stage: Apply Newton's Laws (i.e. "Read" the free-body diagrams).

► Similar to Newton's 1st Law problems, **EACH STEP IS GRADED**.

• **Physics Principle:** Write the relevant Newton's Law(s) equations(s) *independently* for each direction (axis). i.e: Newton's 2^{nd} Law ($\Sigma F = ma$)

example: $\sum ec{F_y} = m ec{a}_y$

 Application: Write the explicit sum of the vectors or component vectors along that direction.
 Note: there must be a variable for every force (arrow) in the FBD.

$$\vec{F}_{1y} + \vec{F}_{2y} + ... + \vec{F}_{Ny} = m\vec{a}_y$$

Sign Convention: Separate magnitude and direction.
 Use +/- signs to represent the direction of the force vectors <u>and</u> the acceleration vector.

$$F_{1y} - F_{2y} + \dots - F_{Ny} = +ma_y$$

- Note: the variables are now magnitudes, so no arrow caps; the direction is described by the +/- signs.
- Write the components in terms of the original magnitudes and functions of the angles (sin or cos), when applicable. If the angle is not known, you may leave it as a component.

$$F_1 \cos \theta_1 - F_2 \sin \theta_2 + \dots = +ma_y$$

· Identify and solve for the desired quantity.

Suggestion: Do not carry out algebraic steps until the direction is represented with +/- signs.