Calculating Torque

CONCEPT: Torque ("moment" in engineering) is the rotational counterpart of force. It is a measure of the ability of a force to cause or change the rotation of an object.

The torque $\vec{\tau}$ about a point P, called the pivot or fulcrum, is given by the cross product between the position vector \vec{r} and the force vector \vec{F} .

MAGNITUDE: The magnitude of the torque about a pivot point is given by:

$$\tau = r F \sin \phi$$

where:

- r is the magnitude of the position vector \vec{r} , it is the distance from the pivot to the point of application of the force (see Fig. a);
- F is the magnitude of the force; and
- ϕ is the angle between the <u>tails</u> of \vec{r} and \vec{F} (see Fig. b).

<u>DIRECTION:</u> The torque vector is perpendicular to the plane defined by vectors \vec{r} and \vec{F} . In the example above, the torque points along the +z-axis, out of the page.

Use the right-hand rule to determine direction (see Fig. c). By convention, the direction of the torque is considered:

- positive (+z-axis) if it causes a counterclockwise (ccw) rotation; and
- negative (-z-axis) if it causes a clockwise (cw) rotation.

VISUALIZING TORQUE:

Torque requires a <u>perpendicular</u> component between the vectors \vec{r} and \vec{F} .

There are two ways of defining it:

- 1. due to the component of the force perpendicular to \vec{r}
- 2. due to the component of \vec{r} perpendicular to the force.

top view of a person pushing a door, producing a torque about the hinge

Method 1

Method 2

- identify the vector \vec{r} , from the pivot to the point of application of the force;
- identify \vec{F}_{\perp} , the component of the force perpendicular to \vec{r} (while \vec{F}_{\parallel} is the component parallel to \vec{r}).
- identify the line of action, the imaginary line along which the force acts;
- identify the moment or lever arm r_{\perp} , which is the minimum distance from the pivot to the line of action.

toque due to distance *r* multiplied by the perpendicular component of the force:

$$\tau = r(F_{\perp})$$

torque due to moment arm r_{\perp} multiplied by the force:

$$\tau = (r_{\perp}) F$$

Note:

- Both methods of visualizing torque are equivalent and provide the same result.
- Select a method based on whether you know r or r_{\perp} .
- Recall that when the line of action of a force crosses the pivot, the torque exerted by that force is zero.

r is known, r = 3 units

 r_{\perp} is known, r_{\perp} = 4 units

 $r = r_{\perp}$