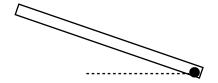
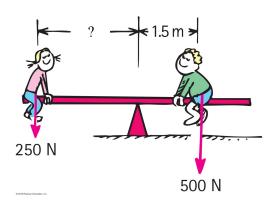

Torque and Rotational Equilibrium

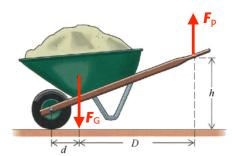
1. **Plumber's Cheater:** A plumber applies his full 900-N weight at a point 0.80 m from the center of a pipe fitting by using a scrap pipe ("cheater"). The wrench-cheater makes an angle of θ =19° with the horizontal. Find the magnitude and direction of the torque.


definition/method (1):

- * Sketch vector *r*
- * Sketch angle ϕ



method (2):


* Sketch vector r_{\perp}

2. **See-saw:** Leah and Thomas are playing on a see-saw. Thomas weighs more than Leah and is seated a distance L = 1.5 m from the pivot point. Where should Leah seat such that the net torque is zero?

- 3. The weight \mathbf{F}_G of the load in a wheelbarrow exerts a torque about the axle of the wheel. A person pulls on the handle with a force \mathbf{F}_p . The wheelbarrow is in rotational equilibrium. The magnitude of the pulling force is:
 - a. smaller than the weight ($F_p < F_G$)
 - b. the same as the weight $(\mathbf{F}_p = \mathbf{F}_G)$
 - c. larger than the weight $(\mathbf{F}_p > \mathbf{F}_G)$
 - d. not possible to determine

